45 research outputs found

    Preoperative Atrial Fibrillation/Flutter Impact on Risk-Adjusted Repeat Aortic Intervention Patients[PROTOCOL]

    Get PDF
    Aim: Impacts of pre-operative atrial fibrillation or flutter (AF/AFL) upon repeat aortic valve replacement (r-AVR) patients’ risk-adjusted short-term outcomes is unknown.Methods: From 2005-2018, New York State AF/AFL versus non-AF/AFL adults’ risk-adjusted r-AVR outcomes were compared. Primary endpoints included the Society of Thoracic Surgeons’ 30-day operative mortality or major morbidity (MM) composite and 30-day readmission (READMIT); the MM sub-components were secondary endpoints. Multivariable logistic regression models evaluated AF/AFL impact upon these endpoints while holding other factors constant.Results: Of 36,783 adults initially undergoing aortic valve replacement, 334 subsequently underwent r-AVR. Within this r-AVR group, 42.4% of repeat surgical (r-SAVR) patients had AF/AFL; 50.4% of repeat transcatheter (viv-TAVR) patients had AF/AFL. R-SAVR AF/AFL patients were older and had more comorbidities than those without AF/AFL. Viv-TAVR AF/AFL patients were similar to those without AF/AFL except for lower rates of chronic obstructive pulmonary disease. Comparing risk-adjusted r-AVR outcomes, AF/AFL did not impact MM [odds ratio (OR), 95% confidence interval (CI): 1.23, 0.66-2.28, P = 0.512] or READMIT (OR, 95%CI: 1.15, 0.60-2.19, P = 0.681). Black race (OR, 95%CI: 2.89, 1.01-8.32, P = 0.049) and Elixhauser mortality score (OR, 95%CI: 1.07, 1.04-1.10, P < 0.0001) predicted MM risk. Cerebrovascular disease (OR, 95%CI: 2.54, 1.23-5.25, P = 0.012) predicted READMIT risk, while viv-TAVR was protective compared to r-SAVR (OR, 95%CI: 0.44, 0.21-0.91, P = 0.027).Conclusion: AF/AFL was not associated with risk-adjusted short-term r-AVR outcomes. Black race, Elixhauser mortality score, and cerebrovascular disease predicted adverse outcomes

    Left ventricular function, congestion, and effect of empagliflozin on heart failure risk after myocardial infarction

    Get PDF
    Background Empagliflozin reduces the risk of heart failure (HF) hospitalizations but not all-cause mortality when started within 14 days of acute myocardial infarction (AMI). Objective To evaluate the association between left ventricular ejection fraction (LVEF), congestion, or both on outcomes and the impact of empagliflozin in reducing HF risk post-MI. Methods In the EMPACT-MI trial, patients were randomized within 14 days of an AMI complicated by either newly reduced LVEF<45%, congestion, or both to empagliflozin 10 mg daily or placebo and followed for a median of 17.9 months. Results Among 6522 patients, the mean baseline LVEF was 41%+9%; 2648 patients (40.6%) presented with LVEF<45% alone, 1483 (22.7%) presented with congestion alone, and 2181 (33.4%) presented with both. Among patients in the placebo arm, multivariable adjusted risk for each 10-point reduction in LVEF included all-cause death or HF hospitalization (hazard ratio [HR] 1.49; 95%CI, 1.31-1.69; P<0.0001), first HF hospitalization (HR, 1.64; 95%CI, 1.37-1.96; P<0.0001), and total HF hospitalizations (rate ratio [RR], 1.89; 95%CI, 1.51-2.36; P<0.0001). Presence of congestion was also associated with a significantly higher risk for each of these outcomes (HR 1.52, 1.94, and RR 2.03, respectively). Empagliflozin reduced the risk for first (HR 0.77, 95%CI 0.60-0.98) and total (RR 0.67, 95%CI 0.50-0.89) HF hospitalization, irrespective of LVEF or congestion or both. The safety profile of empagliflozin was consistent across baseline LVEF and irrespective of congestion status. Conclusions In patients with AMI, severity of LV dysfunction and the presence of congestion was associated with worse outcomes. Empagliflozin reduced first and total HF hospitalizations across the range of LVEF with and without congestion

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore